Copied to
clipboard

G = C42.196D14order 448 = 26·7

16th non-split extension by C42 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.196D14, M4(2).23D14, C4≀C27D7, D4⋊D74C4, C72(C8○D8), Q8⋊D74C4, C7⋊C8.37D4, D4.D74C4, D4.4(C4×D7), C7⋊Q164C4, Q8.4(C4×D7), D28.C49C2, D28.7(C2×C4), C14.39(C4×D4), C4.203(D4×D7), Dic14⋊C47C2, C4○D4.21D14, C28.362(C2×D4), Q8.Dic72C2, C28.53D46C2, C28.20(C22×C4), (C4×C28).51C22, Dic14.7(C2×C4), (C2×C28).264C23, D4.8D14.2C2, C4○D28.13C22, C4.Dic7.9C22, C22.9(D42D7), C2.23(Dic74D4), (C7×M4(2)).17C22, (C4×C7⋊C8)⋊3C2, (C7×C4≀C2)⋊8C2, C7⋊C8.8(C2×C4), C4.20(C2×C4×D7), (C7×D4).7(C2×C4), (C7×Q8).7(C2×C4), (C2×C7⋊C8).222C22, (C7×C4○D4).5C22, (C2×C14).35(C4○D4), (C2×C4).370(C22×D7), SmallGroup(448,358)

Series: Derived Chief Lower central Upper central

C1C28 — C42.196D14
C1C7C14C28C2×C28C4○D28D4.8D14 — C42.196D14
C7C14C28 — C42.196D14
C1C4C2×C4C4≀C2

Generators and relations for C42.196D14
 G = < a,b,c,d | a4=b4=c14=1, d2=cbc-1=b-1, ab=ba, cac-1=ab-1, ad=da, bd=db, dcd-1=b-1c-1 >

Subgroups: 412 in 106 conjugacy classes, 45 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4×C8, C4≀C2, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8○D8, C8×D7, C8⋊D7, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C4×C28, C7×M4(2), C4○D28, C7×C4○D4, C4×C7⋊C8, Dic14⋊C4, C28.53D4, C7×C4≀C2, D28.C4, Q8.Dic7, D4.8D14, C42.196D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C8○D8, C2×C4×D7, D4×D7, D42D7, Dic74D4, C42.196D14

Smallest permutation representation of C42.196D14
On 112 points
Generators in S112
(1 26 70 44)(2 57)(3 28 58 46)(4 59)(5 16 60 48)(6 61)(7 18 62 50)(8 63)(9 20 64 52)(10 65)(11 22 66 54)(12 67)(13 24 68 56)(14 69)(15 47)(17 49)(19 51)(21 53)(23 55)(25 43)(27 45)(29 81)(30 107 82 98)(31 83)(32 109 84 86)(33 71)(34 111 72 88)(35 73)(36 99 74 90)(37 75)(38 101 76 92)(39 77)(40 103 78 94)(41 79)(42 105 80 96)(85 108)(87 110)(89 112)(91 100)(93 102)(95 104)(97 106)
(1 44 70 26)(2 27 57 45)(3 46 58 28)(4 15 59 47)(5 48 60 16)(6 17 61 49)(7 50 62 18)(8 19 63 51)(9 52 64 20)(10 21 65 53)(11 54 66 22)(12 23 67 55)(13 56 68 24)(14 25 69 43)(29 106 81 97)(30 98 82 107)(31 108 83 85)(32 86 84 109)(33 110 71 87)(34 88 72 111)(35 112 73 89)(36 90 74 99)(37 100 75 91)(38 92 76 101)(39 102 77 93)(40 94 78 103)(41 104 79 95)(42 96 80 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 92 26 38 70 101 44 76)(2 75 45 100 57 37 27 91)(3 90 28 36 58 99 46 74)(4 73 47 112 59 35 15 89)(5 88 16 34 60 111 48 72)(6 71 49 110 61 33 17 87)(7 86 18 32 62 109 50 84)(8 83 51 108 63 31 19 85)(9 98 20 30 64 107 52 82)(10 81 53 106 65 29 21 97)(11 96 22 42 66 105 54 80)(12 79 55 104 67 41 23 95)(13 94 24 40 68 103 56 78)(14 77 43 102 69 39 25 93)

G:=sub<Sym(112)| (1,26,70,44)(2,57)(3,28,58,46)(4,59)(5,16,60,48)(6,61)(7,18,62,50)(8,63)(9,20,64,52)(10,65)(11,22,66,54)(12,67)(13,24,68,56)(14,69)(15,47)(17,49)(19,51)(21,53)(23,55)(25,43)(27,45)(29,81)(30,107,82,98)(31,83)(32,109,84,86)(33,71)(34,111,72,88)(35,73)(36,99,74,90)(37,75)(38,101,76,92)(39,77)(40,103,78,94)(41,79)(42,105,80,96)(85,108)(87,110)(89,112)(91,100)(93,102)(95,104)(97,106), (1,44,70,26)(2,27,57,45)(3,46,58,28)(4,15,59,47)(5,48,60,16)(6,17,61,49)(7,50,62,18)(8,19,63,51)(9,52,64,20)(10,21,65,53)(11,54,66,22)(12,23,67,55)(13,56,68,24)(14,25,69,43)(29,106,81,97)(30,98,82,107)(31,108,83,85)(32,86,84,109)(33,110,71,87)(34,88,72,111)(35,112,73,89)(36,90,74,99)(37,100,75,91)(38,92,76,101)(39,102,77,93)(40,94,78,103)(41,104,79,95)(42,96,80,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,92,26,38,70,101,44,76)(2,75,45,100,57,37,27,91)(3,90,28,36,58,99,46,74)(4,73,47,112,59,35,15,89)(5,88,16,34,60,111,48,72)(6,71,49,110,61,33,17,87)(7,86,18,32,62,109,50,84)(8,83,51,108,63,31,19,85)(9,98,20,30,64,107,52,82)(10,81,53,106,65,29,21,97)(11,96,22,42,66,105,54,80)(12,79,55,104,67,41,23,95)(13,94,24,40,68,103,56,78)(14,77,43,102,69,39,25,93)>;

G:=Group( (1,26,70,44)(2,57)(3,28,58,46)(4,59)(5,16,60,48)(6,61)(7,18,62,50)(8,63)(9,20,64,52)(10,65)(11,22,66,54)(12,67)(13,24,68,56)(14,69)(15,47)(17,49)(19,51)(21,53)(23,55)(25,43)(27,45)(29,81)(30,107,82,98)(31,83)(32,109,84,86)(33,71)(34,111,72,88)(35,73)(36,99,74,90)(37,75)(38,101,76,92)(39,77)(40,103,78,94)(41,79)(42,105,80,96)(85,108)(87,110)(89,112)(91,100)(93,102)(95,104)(97,106), (1,44,70,26)(2,27,57,45)(3,46,58,28)(4,15,59,47)(5,48,60,16)(6,17,61,49)(7,50,62,18)(8,19,63,51)(9,52,64,20)(10,21,65,53)(11,54,66,22)(12,23,67,55)(13,56,68,24)(14,25,69,43)(29,106,81,97)(30,98,82,107)(31,108,83,85)(32,86,84,109)(33,110,71,87)(34,88,72,111)(35,112,73,89)(36,90,74,99)(37,100,75,91)(38,92,76,101)(39,102,77,93)(40,94,78,103)(41,104,79,95)(42,96,80,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,92,26,38,70,101,44,76)(2,75,45,100,57,37,27,91)(3,90,28,36,58,99,46,74)(4,73,47,112,59,35,15,89)(5,88,16,34,60,111,48,72)(6,71,49,110,61,33,17,87)(7,86,18,32,62,109,50,84)(8,83,51,108,63,31,19,85)(9,98,20,30,64,107,52,82)(10,81,53,106,65,29,21,97)(11,96,22,42,66,105,54,80)(12,79,55,104,67,41,23,95)(13,94,24,40,68,103,56,78)(14,77,43,102,69,39,25,93) );

G=PermutationGroup([[(1,26,70,44),(2,57),(3,28,58,46),(4,59),(5,16,60,48),(6,61),(7,18,62,50),(8,63),(9,20,64,52),(10,65),(11,22,66,54),(12,67),(13,24,68,56),(14,69),(15,47),(17,49),(19,51),(21,53),(23,55),(25,43),(27,45),(29,81),(30,107,82,98),(31,83),(32,109,84,86),(33,71),(34,111,72,88),(35,73),(36,99,74,90),(37,75),(38,101,76,92),(39,77),(40,103,78,94),(41,79),(42,105,80,96),(85,108),(87,110),(89,112),(91,100),(93,102),(95,104),(97,106)], [(1,44,70,26),(2,27,57,45),(3,46,58,28),(4,15,59,47),(5,48,60,16),(6,17,61,49),(7,50,62,18),(8,19,63,51),(9,52,64,20),(10,21,65,53),(11,54,66,22),(12,23,67,55),(13,56,68,24),(14,25,69,43),(29,106,81,97),(30,98,82,107),(31,108,83,85),(32,86,84,109),(33,110,71,87),(34,88,72,111),(35,112,73,89),(36,90,74,99),(37,100,75,91),(38,92,76,101),(39,102,77,93),(40,94,78,103),(41,104,79,95),(42,96,80,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,92,26,38,70,101,44,76),(2,75,45,100,57,37,27,91),(3,90,28,36,58,99,46,74),(4,73,47,112,59,35,15,89),(5,88,16,34,60,111,48,72),(6,71,49,110,61,33,17,87),(7,86,18,32,62,109,50,84),(8,83,51,108,63,31,19,85),(9,98,20,30,64,107,52,82),(10,81,53,106,65,29,21,97),(11,96,22,42,66,105,54,80),(12,79,55,104,67,41,23,95),(13,94,24,40,68,103,56,78),(14,77,43,102,69,39,25,93)]])

70 conjugacy classes

class 1 2A2B2C2D4A4B4C···4G4H4I7A7B7C8A8B8C8D8E8F8G···8L8M8N14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order12222444···4447778888888···88814141414141414141428···2828···2828282856···56
size112428112···242822244777714···1428282224448882···24···48888···8

70 irreducible representations

dim111111111111222222222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D7C4○D4D14D14D14C4×D7C4×D7C8○D8D4×D7D42D7C42.196D14
kernelC42.196D14C4×C7⋊C8Dic14⋊C4C28.53D4C7×C4≀C2D28.C4Q8.Dic7D4.8D14D4⋊D7D4.D7Q8⋊D7C7⋊Q16C7⋊C8C4≀C2C2×C14C42M4(2)C4○D4D4Q8C7C4C22C1
# reps1111111122222323336683312

Matrix representation of C42.196D14 in GL4(𝔽113) generated by

9811100
011200
0010
0001
,
158500
09800
0010
0001
,
982800
1051500
00970
00297
,
953600
06900
009327
004820
G:=sub<GL(4,GF(113))| [98,0,0,0,111,112,0,0,0,0,1,0,0,0,0,1],[15,0,0,0,85,98,0,0,0,0,1,0,0,0,0,1],[98,105,0,0,28,15,0,0,0,0,97,29,0,0,0,7],[95,0,0,0,36,69,0,0,0,0,93,48,0,0,27,20] >;

C42.196D14 in GAP, Magma, Sage, TeX

C_4^2._{196}D_{14}
% in TeX

G:=Group("C4^2.196D14");
// GroupNames label

G:=SmallGroup(448,358);
// by ID

G=gap.SmallGroup(448,358);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,555,58,136,1684,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=1,d^2=c*b*c^-1=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations

׿
×
𝔽